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Abstract
Despite the progress made in the early detection and treatment of prostate adenocarcinoma, the metastatic

lesions from this tumor are incurable. We used genome-wide expression analysis of human prostate cancer
cells with different metastatic behavior in animal models to reveal that bone-tropic phenotypes upregulate three
genes encoding for the cytokine interleukin-1b (IL-1b), the chemokine CXCL6 (GCP-2), and the protease inhibitor
elafin (PI3). The Oncomine database revealed that these three genes are significantly upregulated in human
prostate cancer versus normal tissue and correlate with Gleason scores�7. This correlationwas further validated
for IL-1b by immunodetection in prostate tissue arrays. Our study also shows that the exogenous overexpression
of IL-1b in nonmetastatic cancer cells promotes their growth into large skeletal lesions in mice, whereas its
knockdown significantly impairs the bone progression of highly metastatic cells. In addition, IL-1b secreted by
metastatic cells induced the overexpression of COX-2 (PTGS2) in human bone mesenchymal cells treated with
conditioned media from bone metastatic prostate cancer cells. Finally, we inspected human tissue specimens
from skeletal metastases and detected prostate cancer cells positive for both IL-1b and synaptophysin while
concurrently lacking prostate-specific antigen (PSA, KLK3) expression. Collectively, these findings indicate that
IL-1b supports the skeletal colonization and metastatic progression of prostate cancer cells with an acquired
neuroendocrine phenotype. Cancer Res; 73(11); 1–9. �2013 AACR.

Introduction
The therapeutic management of patients with prostate

cancer includes the blockade of androgen receptor (AR) acti-
vation and signaling based on androgen-deprivation therapy
(ADT; refs. 1, 2) and receptor antagonists (3). This approach is
initially remarkably effective but eventually leads to the con-
version of the disease to castration-resistant prostate cancer
(CRPC). The conversion toCRPC is attributed to the expression
of splice variants of the AR and recruitment of alternative
signaling pathways that the receptor uses to promote the
growth and survival of malignant cells while escaping the
effects of a range of inhibitory drugs and hormonal therapies

(4, 5). Notably, ADT frequently induces the secondary emer-
gence of highly aggressive prostate phenotypes with neuroen-
docrine features, including the expression of markers such as
chromogranin A and synaptophysin and suppression of PSA
(6, 7). Thus, while neuroendocrine prostate cancer (NEPC) is
considered an aggressive subtype of the primary tumor (8),
prostate disseminated tumor cells (DTC) could acquire NEPC
features following ADT and during the most common clinical
manifestation of the prostate cancer. As NEPC cells are inde-
pendent of androgens for their growth, ADT might provide
them with a selective survival advantage (9). In fact, the
percentage of neuroendocrine cells sharply increases in
high-grade and advanced stage prostate tumors upon estab-
lishment of ADT (10, 11). More importantly, cancer cells
lacking AR and/or PSA expression are frequently detected in
bone metastatic lesions among ARþ and PSAþ malignant
phenotypes (12). These DTCs with acquired NEPC phenotypes
could be very effective in colonizing the bone during the initial
stages of metastasis and be responsible for establishing a
metastatic niche that would subsequently also support the
growth of ARþ/PSAþ cancer cells.

Bone-metastatic disease is often fatal for patients with
prostate cancer and its treatment remains an unmet medical
need. The molecular underpinning for the establishment and
progression of secondary bone lesions has been only partially
elucidated. A better understanding of the factors regulating
bone colonization, particularly the autocrine and paracrine
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interactions of DTCs with the surrounding stroma, will help to
findmore effective therapies for themanagement ofmetastatic
patients. We previously reported that the ability of prostate
cancer cells to generate skeletal tumors in animal models
correlates with the expression of the platelet-derived growth
factor receptor alpha isoform (PDGFRa; refs. 13–15). Here, we
show that PDGFRa upregulates the expression of 3 genes that
were associated with the occurrence of skeletal metastases in
animal models inoculated in the arterial blood circulation with
human prostate cancer cells. Among these genes, interleukin
(IL)-1b is independently accountable for dictating bone-
metastatic behavior and was also detected in human speci-
mens of both primary prostate cancer and bone-metastatic
lesions. Finally, the coexpression of IL-1b with the NEPC
marker synaptophysin in prostate cells detected in human
skeletal lesions corroborates the idea that this cytokine
plays a role in the progression of bone-metastatic tumors
affecting patients with prostate cancer treated with ADT.

Materials and Methods
Cell lines and cell culture

NIH-3T3 and DU-145 cells were obtained from American
Type Culture Collection (ATCC) and passaged in our labo-
ratory for less than than 6 months after resuscitation. PC3-N
and PC3-ML sublines were derived from the parental PC-3
cell line as previously described (16). Both sublines were
tested by Idexx Radil on May 2012 by short tandem repeat-
based DNA fingerprinting and confirmed to be of human
origin without mammalian interspecies contamination. The
alleles for 9 different markers were determined and the
genetic profiles of both PC3-ML and PC3-N cells were found
identical to the profiles reported for the parental PC3 line
deposited with the ATCC. All prostate cancer cells lines were
cultured at 37�C and 5% CO2 in Dulbecco's Modified Eagle
Medium (DMEM; Invitrogen) supplemented with 10% FBS
(Hyclone) and 0.1% gentamicin (Invitrogen). We cultured all
prostate cancer cell lines used in this study for 10 passages
and then thawed a new frozen stock to avoid the emergence of
genotypic and phenotypic changes (17). Cells were genetically
engineered to stably express EGFP using a lentiviral vector
(AmeriPharma). Bone marrow-derived human mesenchymal
stem cells (MSC; Lonza) were used between passage 5 and 8
and cultured in MSC growth medium [a-MEM (Invitrogen)
supplemented with 10% FBS, 1 ng/mL basic fibroblast growth
factor (R&D Systems), and 0.1% gentamicin].

SDS-PAGE and Western blotting
Cell lysates were obtained and SDS-PAGE and Western Blot

analysis conducted as previously described (18) with few
modifications. Membranes were blotted with antibodies tar-
geting IL-1b (SC-7884, Santa Cruz), actin (A-2066, Sigma-
Aldrich), COX-2 (ab15191, Abcam), elafin (SC-20637, Santa
Cruz), and GAPDH (D16H11, Cell Signaling Technology). Pri-
mary antibody binding was detected using a horseradish
peroxidase-conjugated secondary antibody (Pierce; Thermo
Scientific). Chemiluminescent signals were obtained using
SuperSignal West Femto reagents (Pierce) and detected with

the Fluorochem 8900 imaging system and related software
(Alpha Innotech, ProteinSimple).

Conditioned media experiments
Conditioned media were obtained according to ref. 19. In

brief, 7.5 � 105 PC3-ML cells were plated in 15 mL of DMEM
supplemented with 10% FBS and 0.1% gentamycin and cul-
tured for 5 days. The medium from each dish was then
collected and centrifuged at 2,000 rpm for 10 minutes and
then used fresh as described below.

For bone cell treatment experiments, MSCs were plated at
least 48 hours before treatment; when 70%confluent, cellswere
incubated in a 1:1 mixture of conditioned medium and MSC
growth medium for 48 hours. To pharmacologically induce
the overexpression of COX-2 in MSCs, cells were exposed to
0.1 ng/mL of IL-1b (R&D Systems). Cells were preincubated
with the IL-1R inhibitor Anakinra (Amgen) at a 10 mg/mL
concentration for 30 minutes before being exposed to IL-1b.

ELISA measurements
The concentrations of IL-1b and CXCL6 were measured by

ELISA following the manufacturers' protocols. In brief, same
numbers of cells (5�105) were plated in 35 mm culture dishes;
the next day, the medium was replaced with 1 mL of DMEM
supplementedwith 10% FBS and 0.1% gentamycin and cultured
for 24hours. The supernatantswere thencollected, theadherent
cells in each dish measured again, and IL-1b or CXCL6 protein
concentrationsmeasured usingQuantikine kits (R&D Systems).
The ELISA datawere normalized to the number of cells counted
in each dish when the supernatants were collected.

Viral vectors and cell transduction procedures
Depletion of IL-1b in PC3-ML cells. Virus containing

Mission TRC lentiviral vectors shRNA (Sigma-Aldrich) with
sequence 50-CGGCCAGGATATAACTGACTT-30 were used to
knockdown IL-1b expression. Subconfluent cell cultures were
infected overnight in the presence of 8 mg/mL polybrene
(Millipore). The successfully infected cells were selected for
the ability to proliferate in media containing 600 mg/mL of
G418 (Invitrogen) and protein expression was validated by
Western blot analysis using an antibody against IL-1b. Cells
transduced with a TRC lentiviral vector carrying a noncoding
short-hairpin RNA (shRNA) were used in control experiments.

Overexpression of IL-1b in PC3-N and DU-145 cells. To
prepare the IL-1b–overexpressing retrovirus, amixture of pLXSN
vector containing 50 ng of IL-1b plasmid and 8 mL of Lipofecta-
mine 2000 (Invitrogen) was incubated at room temperature for
30 minutes. The transfection mix was transferred to phoenix
cells that were approximately 70% confluent. After 16 hours, the
transfection medium was replaced with growth medium con-
taining 10% serum and the virus was harvested at 38 hours after
transfection. The virus-containing medium was pooled, centri-
fuged at 44,000 rpm for 20 minutes, and the supernatant was
used to infect PC3-N andDU-145 cells. Cells were selected for the
ability to proliferate in media containing G418 (0.6 mg/mL) and
the infectionwas further validatedbyWesternblot analysis using
an antibody against IL-1b. Cells transduced with an empty
pLXSN vector were used in control experiments.
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Animal model of metastasis
Five-week-old male immunocompromised mice (CB17-

SCRF) were obtained from Taconic and housed in a germ-free
barrier. At 6 weeks of age, animals were anesthetized with 100
mg/kg ketamine and 20 mg/kg xylazine administered by
intraperitoneal route and successively inoculated in the left
cardiac ventricle with cancer cells [5� 104 in 100 mL of serum-
free DMEM/F12 (Invitrogen)]. Cell inoculation was conducted
using a 30-gauge needle connected to a 1 mL syringe. The
delivery of the cell suspension in the systemic blood circulation
was validated by the coinjection of blue fluorescent 10 mm
polystyrene beads (Invitrogen-Molecular Probes). Animals
were randomly assigned to different experimental groups and
sacrificed at specified time-points following inoculation.
Organs were harvested and prepared as described below and
tissue sections inspected blindly for metastatic lesions. The
homogeneous and numerically consistent distribution of the
beads in adrenal glands and lungs collected at necropsy and
inspected by fluorescence microscopy were used as discrim-
ination criteria for the inclusion of animals in the studies.
All experiments were conducted in accordance with NIH

guidelines for the humane use of animals. All animal protocols
were approved by the Drexel University College of Medicine
Institutional AnimalCare andUseCommittee (Philadelphia, PA).
Tissue processing. Bones and soft-tissue organs were

collected and fixed in 4% paraformaldehyde solution (Electron
Microscopy Sciences) for 24 hours and then transferred into
fresh formaldehyde for an additional 24 hours. Soft tissueswere
then placed either in 30% sucrose for cryoprotection or 1%
paraformaldehyde for long-term storage. Bones were decalci-
fied in 0.5M EDTA (Fisher Scientific) for 7 days followed by
incubation in 30% sucrose. Tissues were maintained at 4�C for
all aforementioned steps and frozen in optimum cutting
temperature medium (Sakura Finetek) by placement over
dry-ice chilled 2-methylbutane. Serial sections of 80 mm thick-
ness were obtained using a Microm HM550 cryostat. Femur
and tibia in each knee joint were cut entirely through, resulting
in approximately 30 sections per specimen made available for
analysis.
Fluorescence microscopy and morphometric analysis of

metastases. Fluorescent images of skeletal metastases were
acquired using aZeiss AX70microscope (Carl Zeiss) connected
to a Nuance Multispectral Imaging System. Digital images
were analyzed and processed with the Nuance Software
(v. 2.4). Microscope and software calibration for size measure-
mentwas conducted using a TS-M2 stagemicrometer (Oplenic
Optronics).

Microarray processing, normalization, and analysis
Total RNA was purified with Qiagen RNeasy Mini Kit (Qia-

gen). RNA quality control for each set of samples was con-
ducted using a BioAnalyzer (Agilent). Two rounds of amplifi-
cation were used according to the Affymetrix Two-cycle
Amplification protocol using 25 ng for total RNA. Aliquots of
15 mg of amplified biotinylated RNA were hybridized to 1.0
Human Gene ST arrays (Affymetrix). Arrays were scanned
using the GeneChip Scanner 3000 (Affymetrix). The Robust
Multichip Analysis (RMA) algorithm was applied to all array

data (20). GeneSpring software version 11.5 was used to filter
and complete the statistical analysis. To analyze the micro-
array data, CEL files were loaded to GeneSpring, and probeset
summarization was conducted using the RMA 16 algorithm.
For each probe, themedian of the log-summarized values from
all the samples was calculated and subtracted from each
sample. After processing and normalization, the resulting
28,869 genes included in the 1.0 Human Gene ST arrays were
filtered to remove very low or saturated signal values. Each
entity was filtered on raw data by percentile with an upper
cutoff of 100 and a lower cutoff 20. The resulting new entities
were then subjected to statistical analysis using an unpaired t
test with aP valuefixed at 0.05. Finally, a higher stringencyfilter
was applied to the resulting entities using a 2.0 fold-change
cutoff and the Benjamin–Hochberg multiple testing correc-
tions. The microarray data were submitted to the gene expres-
sion omnibus (GEO) data repository and can be accessed with
the number GSE43332.

Oncomine analysis
The oncomine database (available online) was searched for

IL-1b, CXCL6, and PI3 genes. The datasets containing expres-
sion data for each gene were filtered to display upregulation in
prostate cancer versus normal prostate tissue with P < 0.05. If
more than one dataset passed the filters, we conducted ameta-
analysis to obtain a P value.

Clinical samples, immunohistochemistry, and analysis
Commercially available human tissue microarrays (TMA;

PR956, PR8010, PR483, PR751) contained 192 prostate tissue
cores and were obtained from US Biomax. Two additional
existing TMAs containing 35 deidentified human prostate
cancer specimens as well as 7 deidentified bone tissue speci-
mens with metastatic prostate cancer were obtained from the
archives of the Department of Pathology at Drexel University
College of Medicine.

Immunohistochemical detection was conducted using anti-
bodies against IL-1b (ab2105, AbCam), PSA (ER-PR8, Cell
Marque), and Synaptophysin (SP11, Ventana) all diluted 1:50
on formalin-fixed paraffin-embedded sections. The staining
conditions using the BenchMark ULTRA IHC/ISH Staining
module were as follows: antigen retrieval (pH 8.1) using CC1
reagent 64 minutes, followed by primary antibody incubation
for 40 minutes at 37�C, and then staining with the XT, Ultra-
view Universal DAB Detection Kit. Interpretation and scoring
was conducted by 2 clinical pathologists (F.U. Garcia and M.I.
Lioni) using light microscopy. Staining intensities were scored
as follows 0, no staining; 1, weak staining; 2, moderate staining;
and 3, strong staining. Only samples that showed 40% or more
of cellular staining were used for the analysis.

Statistics
We analyzed number and size of skeletal metastases

between 2 experimental groups using a 2-tailed Student t test
and between multiple groups using a one-way ANOVA test. A
value of P � 0.05 was deemed significant. The results of TMA
staining were subjected to c2 analysis and plotted in a con-
tingency table.
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Results and Discussion
We conducted genome-wide comparative transcriptome

analyses of human prostate cancer cell lines that differ in
PDGFRa expression and propensity to establish tumors in the
skeleton of animal models. First, we examined genes that were
differentially regulated in the highly bone-metastatic PC3-ML
cells and their low-metastatic counterpart PC3-N cells (16).
Both sublines were derived from the PC3 parental cell line,
which was originally obtained from a skeletal lesion in a patient
with grade 4 metastatic prostate adenocarcinoma treated with
ADT (21). These cells lack AR and PSA and their androgen-
independent status is associated with the expression of neu-
roendocrine markers (22). We have previously reported that
PC3-ML cells directly inoculated into the arterial circulation of
severe combined immunodeficient (SCID) mice generate large
skeletal lesions in more than 90% of animals (Supplementary
Fig. S1A and S1C; ref. 14). These cells express high levels of
PDGFRa, in contrast to PC3-N cells, which show lowmetastatic
potential in the same animal model and express significantly
lower levels of the PDGFRa (13). Microarray data analysis
revealed that 16 genes were differentially expressed between
high-metastatic PC3-ML and low-metastatic PC3-N cells (Sup-
plementary Fig. S2A). Because we previously found that the
overexpression of PDGFRa in PC3-N cells induces a bone-
metastatic behavior identical to that of PC3-ML cells (14, 23),
we investigated the genes differentially regulated between PC3-
N and PC3-N(Ra) (Supplementary Fig. S2B). This approach
identified 7 genes that were similarly upregulated in highly
metastatic PC3-ML and PC3-N(Ra) cells as compared with low
metastatic PC3-N cells (Supplementary Fig. S2C and S2D).
These results were significantly strengthened by the analysis

of DU-145 cells, which were isolated from a brain rather than a
skeletal metastatic lesion in a patient with prostate cancer (24,
25). We have previously shown that DU-145 cells lack PDGFRa
(13) and fail to survive longer than 3 days as DTCs after homing
to the mouse bone marrow (Supplementary Fig. S1A and S1B;
ref. 14). Interestingly, and in contrast to PC3-N cells, the
exogenous expression of PDGFRa did not promote metastatic
bone-tropism of DU-145 cells in our model (data not shown).
Consistent with this observation, PDGFRa expression in DU-
145 cells upregulated 5 genes that did not overlap with the 7
putative prometastatic genes identified in PC3 cells (Supple-
mentary Fig. S3), suggesting their lack of involvement in the
bone-metastatic behavior of prostate cancer cells. To refine
these findings and compensate for the inherent genetic dispar-
ity of PC3 and DU-145 cells, we isolated 2 single-cell progenies
fromPC3-ML cells.When tested in our animalmodel, bothPC3-
ML clone 1 and clone 3 were highly bone-metastatic (Supple-
mentary Fig. S4). A comparative analysis of the genes differen-
tially regulated between these 2 clonal cell lines and our newly
identified 7 gene set resulted in a final cohort of 3 upregulated
genes: the inflammatory cytokine IL-1b, the chemokine CXCL6,
and the leukocyte protease inhibitor elafin. These 3 genes con-
sistently correlated with both PDGFRa expression and aggres-
sive bone-metastatic behavior in our model. Proteomic appro-
aches validated the transcriptome analysis and confirmed the
data relative to IL-1b (Supplementary Fig. S5) as well as CXCL6
and elafin (Supplementary Fig. S6). These results were corrob-
orated by mining prostate cancer datasets publically available
through the Oncomine repository, showing that IL-1b, CXCL6,
and elafin are significantly upregulated in tumors as compared
with normal prostate tissues (Table 1, top). Furthermore, a

Table 1. The Oncomine database shows a consistent increase in the expression of these 3 genes in tumor
as compared with normal prostate tissue (top); a significant correlation between IL-1b and CXCL6
expression in tumors with Gleason scores (7–9) and (8–9), respectively

Oncomine analysis

Analysis type: Prostate cancer versus normal

Gene P Fold PC/N PC, n N, n Dataset

IL-1b 0.01 1.18 156 29 ref. 51
0.01 1.42 13 6 ref. 52
0.02 1.08 89 23 ref. 53

CXCL6 0.003 1.132 89 23 ref. 53
0.022 1.269 52 50 ref. 54

Elafin (PI3) 0.008 1.131 52 50 ref. 54

Meta-analysis Association with Gleason Score

Gene Median rank P Gleason score Genes P

IL-1b 2239 0.029 7–9 IL-1b 0.023
CXCL6 1656 0.013 8–9 CXCL6 0.013
Elafin Only one study 8–9 Elafin 0.008

NOTE: Only one study analyzing Elafin expression in tumor versus normal and Gleason scores (8–9) was available (bottom).
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meta-analysis indicated a strong association of both IL-1b and
CXCL6 with prostate cancer with Gleason scores (�7; Table 1,
bottom). In light of these observations, we screened human
tissue arrays including 227 cases of prostate adenocarcinoma
for IL-1b protein expression and correlated signal intensities
with the Gleason score attributed to each tissue specimen
(Fig. 1). This approach validated the results from the Oncomine
analysis and conclusively shows that prostate tumors with
intermediate and high Gleason scores, which have the highest
propensity tometastasize (26, 27), express increased levels of IL-
1b as comparedwith tumorswithGleason scores (<7) ornormal
tissues (Supplementary Table S1). Remarkably, IL-1b inhibits
the expression of both PSA (28) and AR (29) in prostate cancer
cells, thus reproducing featuresobserved inPC3-MLcells aswell
as NEPC cells either primarily or as a consequence of ADT
(7, 30). Therefore, we reasoned that IL-1b could be a crucial
player in the establishment of skeletal secondary lesions by
prostate cancer. To challenge this hypothesis, we used a pre-
clinical animal model of metastasis and used shRNA to deplete
IL-1b in PC3-ML cells to levels of expression and secretion

comparable with those observed in PC3-N cells (Fig. 2A and B).
The resulting PC3-ML(sh-IL-1b) cells were delivered in the
systemic arterial circulation of mice euthanized 4 weeks later
and showed significantly impaired metastatic abilities. The
inspection of femora and tibiae of inoculated animals showed
that PC3-MLandPC3-ML(sh-IL-1b) cells producedbonemetas-
tases in a comparable number of animals (Fig. 2C). However, the
lesions generated by PC3-ML(sh-IL-1b) cells were 70% smaller
than those observed in mice inoculated with PC3-ML cells
expressing endogenous levels of IL-1b. (Fig. 2D and E). It is
plausible that silencing IL-1b in combination with one or both
of the other 2 genes identified in this study provides superior
inhibition of metastatic progression than silencing IL-1b alone.
Our laboratory is currently actively pursuing the preclinical
validation of this paradigm.

To further define the role of IL-1b in skeletal metastasis, we
conducted complementary experiments in which this cytokine
was exogenously overexpressed in prostate cancer cells with
demonstrated inability to progress to macroscopic bone
lesions. We first studied PC3-N cells, which routinely produce
small lesions in only 20% of animals inspected at 3 weeks after
inoculation and regress thereafter (Supplementary Fig. S1) and
(14). After homing to the skeleton from the blood circulation,
PC3-N(IL-1b) cells were able to fully progress into tumors
comparable in number and size to the lesions produced by
PC3-N(Ra) cells (Fig. 3; refs. 14, 15). More importantly, anal-
ogous results were obtained with DU-145 cells, which are
widely reported to lack bone-tropism in mouse models (31).
We have previously shown that this lack ofmetastatic behavior
is caused by the inability of these cells to survive for more than
3 days after homing to the bone marrow (14). DU-145 cells do
not endogenously express IL-1b (28,32); interestingly, upon
overexpression of this cytokine (Fig. 4A and B) these cells
generated skeletal metastases in 40% of mice examined at 4
weeks after inoculation (Fig. 4C). Although these lesions were
smaller in size than the skeletal tumors produced by PC3-N(IL-
1b) cells after the same time interval (Fig. 4D and E), these data
provide compelling evidence that, in addition to potentiating
theweak bone-tropismof PC3-N cells, IL-1b can induce de novo
metastatic behavior in prostate cancer cells. Furthermore,
the increase in tumor area observed for DU-145 (IL-1b) lesions
detected 4 weeks compared with those at 2 weeks after
inoculation (Fig. 4D) clearly indicates that IL-1b promotes
both survival and proliferation of metastatic cells in the
skeleton.

Despite originating from different metastatic sites in
patients with prostate cancer, PC3 and DU-145 cells both
express neuroendocrine markers (33). The acquisition of a
neuroendocrine phenotype is frequently induced by the ADT
commonly used for patients with advanced prostate adeno-
carcinoma (9, 34, 35) and is also observed in transgenic
animal models of prostate cancer upon castration (36). These
observations would suggest that the convergence of ADT-
induced neuroendocrine transdifferentiation and increased
expression of IL-1b underpins the propensity of prostate
cancer cells to colonize the skeleton and eventually progress
to secondary bone lesions. To test this model, we used an ex
vivo analysis of skeletal lesions obtained from patients with

A

B

Figure 1. Upregulation of the genes for IL-1b, CXCL6, and elafin in
prostate cancer. A, TMAs including 227 cases of primary prostate
adenocarcinoma were stained for IL-1b with signal intensities that were
scored as weak (1þ, top), moderate (2þ, middle), and strong (3þ,
bottom). B, higher magnification of 2 representative tissue specimens
that stained negative (left) and strongly positive (right) for IL-1b,
respectively. Hematoxylin–eosin counterstaining was used (B).
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advanced prostate cancer and found that all specimens stained
positively for IL-1b. Interestingly, the intensity of the signal
showed an inverse correlation with PSA expression (Fig. 5A),
and two specimens also stained positively for synaptophysin
(Fig. 5B). These results provide strong support for a role of IL-
1b overexpression in bone-metastatic growth of prostate can-
cer cells and suggest a frequent association of this cytokine

with evident NEPC features of skeletal metastases from pros-
tate adenocarcinoma.

The secondary tropism of metastatic tumors is the result
of compatibility between DTCs and the tissue microenvi-
ronment of the colonized organs (37, 38). Because of the
stimulatory effect exerted by IL-1b on the bone-resorption
activity of osteoclasts (39), a plausible scenario would
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Figure 3. Effects of IL-1b
overexpression on the metastatic
potential of prostate cancer cells in
vivo. IL-1b protein expression (A)
and secretion (B) were
exogenously increased in low-
metastatic PC3-N cells; the
resulting PC3-N(IL-1b) cells were
as effective as PC3-N(Ra) cells in
generating skeletal lesions in mice
sacrificed 4 weeks after
intracardiac inoculation (C) and
produced bone lesions that were
comparable in size (D and E). PC3-
N cells transduced with an empty
pLXSN vector were inoculated in
the arterial circulation of 5 mice
that were euthanized 4 weeks later
and found to be free of skeletal
tumors (not shown). M, number of
metastatic tumors.
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include this cytokine supporting secondary skeletal lesions
by promoting bone matrix turnover and increasing the
availability of trophic factors for the disseminated cancer
cells. Indeed, this mechanism is commonly targeted by
bisphosphonates and RANKL inhibitors in the clinical man-
agement of patients with metastatic breast and prostate
cancer (40, 41). Because we and others have shown that
osteoclasts are not involved in these early phases of bone
marrow colonization (42–14), the newly identified prometa-
static role of IL-1b might be exerted through either auto-
crine trophic stimulation of cancer cells, or a more complex
paracrine recruitment of surrounding bone stromal cells
other than osteoclasts. In the latter scenario, IL-1b would
stimulate cells of the bone stroma and induce them to
reciprocate with increased or ex novo production of trophic
factors that would support the survival and growth of DTCs
(44). In a recent study, Weinberg and colleagues have shown
that IL-1b derived from carcinoma cells increases the
expression of the COX-2 enzyme in MSCs of the tumor
stroma and the consequent secretion of prostaglandin E2
(PGE2). The effect of PGE2 is exerted through a direct
paracrine stimulation of the cancer cells and the autocrine
induction of cytokine secretion from MSCs (19). Thus, we
sought to ascertain whether a similar model could be
applied to the prometastatic role of IL-1b revealed by our
studies. To this end, we exposed human MSCs to media
conditioned by PC3-ML cells and measured the effects on
COX-2 expression after 48 hours. We concluded that the
increase in COX-2 observed in MSCs was induced by the IL-
1b secreted by PC3-ML cells, as the IL-1R antagonist Ana-
kinra (45) was able to completely prevent it (Fig. 6). On the
basis of this observation, further experiments are being

Figure 4. Exogenous expression of
IL-1b in nonmetastatic DU-145 cells
induces a bone-metastatic
phenotype. The expression (A) and
secretion (B) of IL-1b were
exogenously induced in DU-145
cells, which are normally negative for
this protein and nonmetastatic. C,
the resulting DU-145 (IL-1b) cells
generated bone lesions in 40% of
mice inoculated via the intracardiac
route and sacrificed either 2 or 4
weeks after inoculation. D, the size of
skeletal lesions increased in a time-
dependent manner, thus suggesting
metastatic progression E, size
comparison of bone tumors
detected at 2weeks after inoculation
inmice that receivedPC3-N(IL-1b) or
DU-145 (IL-1b) cells. M, number of
metastatic tumors; �, P ¼ 0.037.
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Figure 5. Detection of IL-1b protein in skeletal metastases and
correlation with PSA and synaptophysin expression. Seven
specimens collected from different patients with prostate cancer were
analyzed. All specimens stained positive for IL-1b and the intensity of
the signal seemed to be inversely correlated with the expression levels
of PSA in the same areas. Representative images from 2 different
tumor regions in a single patient are shown in A. Two out of 7
specimens stained positive for both IL-1b and synaptophysin (SYP; B).
Magnification, �100 for A; �200 for B.
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conducted in our laboratory to conclusively establish the
role of COX-2 and PGE2 in the bone metastatic progression
of prostate cancer cells.

Our study emphasizes the importance of early survival of
DTCs mediated by IL-1b for successful lodging and initial
colonization of the bone. These events are particularly relevant
for the seeding of additional tumors by circulating tumor cells
dislodged from preexisting lesions and commonly detected in
the peripheral blood of patients with metastatic disease (46–
48). Thus, disrupting the functional interactions between IL-1b

and its receptors, most likely IL-1R, would substantially atten-
uate the progression of prostate cancer at the skeletal level and
possibly reduce the secondary involvement of other organs.

Notably, therapeutics that target either IL-1b or IL-1R are
currently available and prescribed for skeletal inflammatory
conditions of non-neoplastic etiology such as rheumatoid
arthritis (45, 49, 50). The evidence provided by our study should
lead to the repositioning of these drugs in the clinic and rapidly
translate into novel strategies for treating existing metastatic
skeletal lesions as well as preventing ongoing seeding of
additional lesions both in bone and visceral organs.
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  5	
  genes	
  

A	
  

B	
  

Supplementary	
  Figure	
  3.	
  	
  Genes	
  regulated	
  by	
  PDGFRα	
  in	
  DU-­‐145	
  cells,	
  which	
  did	
  not	
  acquire	
  
bone-­‐metasta4c	
  behavior	
  upon	
  exogenous	
  expression	
  of	
  this	
  receptor.	
  	
  
Five	
  genes	
  were	
  regulated	
  by	
  PDGFRα	
  in	
  DU-­‐145	
  cells	
  (a);	
  none	
  of	
  these	
  genes	
  showed	
  overlap	
  with	
  
the	
  seven	
  genes	
  regulated	
  by	
  PDGFRα	
  in	
  PC3	
  cells	
  (b).	
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Supplementary	
  Figure	
  4.	
  	
  Two	
  single-­‐cell	
  progenies	
  of	
  PC3-­‐ML	
  cells	
  with	
  high	
  bone-­‐metasta4c	
  poten4al.	
  	
  
Clone	
  1	
  and	
  Clone	
  3	
  were	
  	
  inoculated	
  in	
  five	
  mice	
  each	
  and	
  generated	
  large	
  skeletal	
  lesions	
  in	
  all	
  animals	
  (a);	
  	
  
Venn	
  diagram	
  showing	
  overlap	
  of	
  genes	
  differen4ally	
  regulated	
  between	
  Clone	
  1	
  and	
  Clone	
  3	
  and	
  their	
  	
  
overlapping	
  with	
  the	
  7-­‐gene	
  set	
  iden4fied	
  in	
  figure	
  S3.	
  Three	
  genes	
  were	
  strongly	
  associated	
  with	
  metasta4c	
  	
  
behavior	
  of	
  prostate	
  cancer	
  cells	
  in	
  animal	
  models	
  (b).	
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Supplementary	
  Figure	
  5.	
  	
  Analysis	
  of	
  IL-­‐1β	
  expression	
  and	
  secre4on	
  from	
  prostate	
  cancer	
  cells.	
  
PC3-­‐ML	
  cells	
  showed	
  higher	
  levels	
  of	
  IL-­‐1β	
  expression	
  as	
  compared	
  to	
  PC3-­‐N	
  cells	
  and	
  the	
  exogenous	
  
over-­‐expression	
  of	
  PDGFRα 	
  up-­‐regulated	
  IL-­‐1β	
  expression	
  in	
  PC3-­‐N	
  cells.	
  In	
  contrast,	
  PDGFRα	
  did	
  not	
  
increase	
  IL-­‐1β	
  expression	
  	
  in	
  DU-­‐145	
  cells	
  (a);	
  the	
  levels	
  of	
  IL-­‐1β	
  secreted	
  by	
  different	
  cell	
  types	
  and	
  	
  
measured	
  by	
  ELISA	
  	
  confirmed	
  the	
  Western	
  Blodng	
  results.	
  All	
  together	
  these	
  data	
  provide	
  full	
  	
  valida4on	
  	
  
of	
  the	
  gene	
  expression	
  microarray	
  analyses	
  (b);	
  over-­‐expression	
  or	
  silencing	
  of	
  IL-­‐1β	
  in	
  different	
  cell	
  types	
  	
  
that	
  were	
  tested	
  in	
  our	
  animal	
  model	
  for	
  their	
  respec4ve	
  metasta4c	
  behavior	
  (c).	
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Supplementary	
  Figure	
  6.	
  	
  PDGFRα	
  regulates	
  Elafin	
  and	
  CXCL6	
  expression	
  in	
  prostate	
  cancer	
  cells.	
  
PC3-­‐ML	
  cells	
  express	
  higher	
  levels	
  of	
  Elafin	
  as	
  compared	
  to	
  PC3-­‐N	
  cells	
  and	
  the	
  over-­‐expression	
  of	
  	
  
PDGFRα	
  upregulates	
  this	
  protein	
  	
  in	
  PC3-­‐N	
  cells	
  but	
  not	
  in	
  DU-­‐145	
  cells	
  (a);	
  a	
  similar	
  pafern	
  of	
  	
  
PDGFRα	
  regula4on	
  can	
  be	
  	
  observed	
  for	
  CXCL6	
  when	
  measured	
  as	
  secreted	
  protein	
  in	
  the	
  same	
  cells	
  (b).	
  
Both	
  sets	
  of	
  data	
  are	
  in	
  full	
  agreement	
  with	
  the	
  results	
  of	
  the	
  microarray	
  analysis.	
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Supplementary	
  Table	
  1.	
  Con4ngency	
  table	
  of	
  TMA	
  data	
  showing	
  that	
  prostate	
  tumors	
  with	
  
Gleason	
  scores	
  (≥7)	
  expressed	
  higher	
  levels	
  of	
  the	
  IL-­‐1β	
  protein	
  as	
  compared	
  to	
  tumors	
  with	
  
lower	
  Gleason	
  scores	
  (<7)	
  (E).	
  Chi-­‐square	
  =	
  33.08	
  and	
  p<0.0001	
  

!
GLEASON!

Intensity!of!IL21β! !
TOTAL!

0/1+% 2+% 3+%

<%7% 38% 35% 8% 81%

≥%7% 22% 73% 51% 146%
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